371 research outputs found

    A Note on Boltzmann Brains

    Get PDF
    Understanding the observed arrow of time is equivalent, under general assumptions, to explaining why Boltzmann brains do not overwhelm ordinary observers. It is usually thought that this provides a condition on the decay rate of every cosmologically accessible de Sitter vacuum, and that this condition is determined by the production rate of Boltzmann brains calculated using semiclassical theory built on each such vacuum. We argue, based on a recently developed picture of microscopic quantum gravitational degrees of freedom, that this thinking needs to be modified. In particular, depending on the structure of the fundamental theory, the decay rate of a de Sitter vacuum may not have to satisfy any condition except for the one imposed by the Poincare recurrence. The framework discussed here also addresses the question of whether a Minkowski vacuum may produce Boltzmann brains.Comment: 10 pages, 1 figure; discussion in Section 4 modified and expande

    Reanalyzing an Evaporating Black Hole

    Get PDF
    A coherent picture of the quantum mechanics of a collapse-formed, evaporating black hole is presented. In a distant frame, semiclassical theory in the zone describes microscopic dynamics of only the "hard modes," the modes that are hard enough to be discriminated in the timescale of Hawking emission. The thermal nature of these modes arises from microcanonical typicality of the full black hole degrees of freedom, mostly composed of the "soft modes," the modes that cannot be discriminated at the semiclassical level. The hard modes are purified by a combined system of the soft modes and early Hawking radiation, but not by either of them separately. This intrinsically tripartite structure of entanglement is general, regardless of the age of the black hole. The interior spacetime emerges only at a coarse-grained level. To describe it, an effective theory can be erected at each time, which applies only to a limited spacetime region determined by the time at which the theory is erected. The entire interior of the black hole can be described only using multiple effective theories erected at different times, realizing the idea of complementarity. We analyze implications of the entanglement structure described here for various phenomena, including Hawking evaporation and general information retrieval. For multiple entangled black holes, it implies that semiclassical objects dropped into different black holes cannot meet in the interior, although each object smoothly enters the horizon of the black hole to which it is falling. We also discuss physics in Rindler space, elucidating how it is obtained as a smooth limit of the black hole physics.Comment: 46 pages, 4 figures; clarifications and comments adde

    Tensor Modes in Pure Natural Inflation

    Full text link
    We study tensor modes in pure natural inflation (arXiv:1706.08522), a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the theta-angle dependence of the vacuum energy.Comment: 6 pages, 6 figures; v2: journal versio

    Why Firewalls Need Not Exist

    Get PDF
    The firewall paradox for black holes is often viewed as indicating a conflict between unitarity and the equivalence principle. We elucidate how the paradox manifests as a limitation of semiclassical theory, rather than presents a conflict between fundamental principles. Two principal features of the fundamental and semiclassical theories address two versions of the paradox: the entanglement and typicality arguments. First, the physical Hilbert space describing excitations on a fixed black hole background in the semiclassical theory is exponentially smaller than the number of physical states in the fundamental theory of quantum gravity. Second, in addition to the Hilbert space for physical excitations, the semiclassical theory possesses an unphysically large Fock space built by creation and annihilation operators on the fixed black hole background. Understanding these features not only eliminates the necessity of firewalls but also leads to a new picture of Hawking emission contrasting pair creation at the horizon.Comment: 15 pages, 4 figures; v2: revised discussion on the number of configurations for semiclassical excitations, conclusion unchanged; v3: minor edits, to appear in Phys. Lett.
    • …
    corecore